<p><img class="fm-editor-equation" src="" data-mlang="latex" data-equation="2(%5Csqrt%5B3%5D%7B2%7D%20%2B%207%5Csqrt%5B3%5D%7B6%7D%20)%20%2B%208(%5Csqrt%7B4%7D%20-%208%5Csqrt%7B9%7D)%20%3D%202%5Csqrt%5B3%5D%7B2%7D%20%2B%202%5Ccdot%207%20%5Csqrt%5B3%5D%7B6%7D%20%2B%208%5Csqrt%7B4%7D%20-8%5Ccdot%208%5Csqrt%7B9%7D%20%3D%202%5Csqrt%5B3%5D%7B2%7D%2B%2014%5Csqrt%5B3%5D%7B6%7D%20%2B%208%5Csqrt%7B4%7D%20-%2064%5Csqrt%7B9%7D%20%3D%202%5Csqrt%5B3%5D%7B2%7D%2B%2014%5Csqrt%5B3%5D%7B6%7D%20%2B%208%5Csqrt%7B4%7D%20-%2064%20%5Ccdot%203%20%3D%20%202%5Csqrt%5B3%5D%7B2%7D%2B%2014%5Csqrt%5B3%5D%7B6%7D%20%2B%208%5Csqrt%7B4%7D%20-%20192" /></p>